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Prologue

In Riemannian geometry, the fundamental object is the metric, gµν .

Diffeomorphism: ∂µ −→ ∇µ = ∂µ + Γµ

∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλµν = 1
2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

Curvature: [∇µ,∇ν ] −→ Rκλµν −→ R

On the other hand, string theory puts gµν , Bµν and φ on an equal footing,

as they – so called NS-NS sector – form a multiplet of T-duality.

This suggests the existence of a novel unifying geometric description of them,

generalizing the above Riemannian formalism.

Basically, Riemannian geometry is for Particle theory. String theory requires a

novel differential geometry which geometrizes the whole NS-NS sector.
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Prologue

My talk today aims to introduce such a Stringy Geometry which is defined in

doubled-yet-gauged spacetime.
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Prologue

Gauge symmetry is a ‘non-physical’ symmetry.

It is a redundant symmetry of Lagrangian, not a physical symmetry of Nature.

All the physical quantities are gauge invariant. Gauge transformations do not change

any physics.

However, ironically and intriguigly enough, Gauge Symmetry has been a key principle

in modern physics and has lead to the success of the Standard Model.

In particular, in four-dimensional spacetime photon has ‘two’ physical degrees of

freedom, but can be best described by a ‘four’ component vector.

One of the main messages of this talk:

D-dimensional spacetime may be better understood in terms of doubled-yet-gauged

(D + D) number of coordinates, at least for String Theory.
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Talk based on works with Imtak Jeon & Kanghoon Lee

Differential geometry with a projection: Application to double field theory

arXiv:1011.1324 JHEP

Double field formulation of Yang-Mills theory arXiv:1102.0419 PLB

Stringy differential geometry, beyond Riemann arXiv:1105.6294 PRD

Incorporation of fermions into double field theory arXiv:1109.2035 JHEP

Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity

arXiv:1112.0069 PRD Rapid Comm.

Ramond-Ramond Cohomology and O(D,D) T-duality arXiv:1206.3478 JHEP

Stringy Unification of Type IIA and IIB Supergravities under

N = 2 D = 10 Supersymmetric Double Field Theory arXiv:1210.5078 PLB

Comments on double field theory and diffeomorphisms arXiv:1304.5946 JHEP

Covariant action for a string in doubled yet gauged spacetime arXiv:1307.8377 NPB

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Parallel works on U-duality

U-geometry: SL(5) with Yoonji Suh arXiv:1302.1652 JHEP

M-theory and F-theory from a Duality Manifest Action

with Chris Blair and Emanuel Malek arXiv:1311.5109 JHEP

U-gravity: SL(N) with Yoonji Suh arXiv:1402.5027 JHEP
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

With a “generalized metric” Duff and a redefined dilaton:

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
−ge−2φ

DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

LDFT = e−2d
[
HAB

(
4∂A∂Bd − 4∂Ad∂Bd + 1

8 ∂AHCD∂BHCD − 1
2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

Spacetime is formally doubled, yA = (x̃µ, xν), A = 1, 2, · · · ,D+D.

T-duality is manifestly realized as usual O(D,D) rotations Tseytlin, Siegel

HAB −→ MA
CMB

DHCD , d −→ d , M ∈ O(D,D) .

Yet, DFT (for NS-NS sector) is a D-dimensional theory written in terms of

(D + D)-dimensional language, i.e. tensors.

All the fields must live on a D-dimensional null hyperplane or ‘section’, subject to

∂A∂
A = 2

∂2

∂xµ∂x̃µ
≡ 0 : section condition
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2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

Up to O(D,D) rotation, we may fix the section, or choose to set

∂

∂x̃µ
≡ 0 .

Then DFT reduces to the well-known effective action within ‘Riemannian’ setup:

LDFT =⇒ Leff. =
√
−ge−2φ

(
Rg + 4(∂φ)2 − 1

12 H2
)
.

where the diffeomorphism and the B-field gauge symmetry are ‘tamed’ under our

control,

xµ → xµ + δxµ , Bµν → Bµν + ∂µΛν − ∂νΛµ .
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On the other hand, in the above formulation of DFT, the diffeomorphism and the

B-field gauge symmetry are rather unclear, while O(D,D) T-duality is manifest.

The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.

The underlying differential geometry is missing here.
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The underlying differential geometry is missing here.
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Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

With a “generalized metric” Duff and a redefined dilaton:
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 , e−2d =
√
−ge−2φ

DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

LDFT = e−2d
[
HAB

(
4∂A∂Bd − 4∂Ad∂Bd + 1

8 ∂AHCD∂BHCD − 1
2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

On the other hand, in the above formulation of DFT, the diffeomorphism and the

B-field gauge symmetry are rather unclear, while O(D,D) T-duality is manifest.

The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.

The underlying differential geometry is missing here.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



Double Field Theory by Hull & Zwiebach (Hohm), c.f. Siegel

With a “generalized metric” Duff and a redefined dilaton:

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
−ge−2φ

DFT Lagrangian constructed by Hull & Zwiebach (Hohm) reads

LDFT = e−2d
[
HAB

(
4∂A∂Bd − 4∂Ad∂Bd + 1

8 ∂AHCD∂BHCD − 1
2 ∂AHCD∂CHBD

)
+ 4∂AH

AB
∂Bd − ∂A∂BH

AB
]

On the other hand, in the above formulation of DFT, the diffeomorphism and the

B-field gauge symmetry are rather unclear, while O(D,D) T-duality is manifest.

The above expression may be analogous to the case of writing the Riemannian scalar

curvature, R, in terms of the metric and its derivative.

The underlying differential geometry is missing here.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



In the remaining of this talk, I will try to explain our proposal for

the Stringy Differential Geometry of DFT
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In the remaining of this talk, I will try to explain our proposal for

the Stringy Differential Geometry of DFT

Key concepts include

Projector

Semi-covariant derivative

Semi-covariant curvature

And their complete covariantization via ‘projection’

c.f. Alternative approaches: Berman-Blair-Malek-Perry, Cederwall, Geissbuhler, Marques et al.
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Question: Is DFT a mere reformulation of SUGRA?

YES, if we take the following as a definition of the generalized metric,

HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 .

NO, if we define the generalized metric as a symmetric O(D,D) element,

HAB = HBA , HA
CHB

DJCD = JAB ,

where J denotes the O(D,D) invariant constant metric.

With this abstract definition, DFT as well as a worldsheet sigma model (which I will

discuss later) perfectly make sense.

It may then describe a novel non-Riemannian string theory backgrounds, e.g.

HAB = JAB ,

which does not admit any Riemannian interpretation!

c.f. Global aspects such as “non-geometry" Berman-Cederwall-Perry, Papadopoulos

and Scherk-Schwarz Geissbuhler, Grana-Marques, Aldazabal-Grana-Marques-Rosabal,

Dibitetto-Fernandez-Melgarejo-Marques-Roest, Berman-Lee
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Geometric Constitution of Double Field Theory
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Geometric Constitution of Double Field Theory

Notation

Capital Latin alphabet letters denote the O(D,D) vector indices, i.e.

A,B,C, · · · = 1, 2, · · · ,D+D, which can be freely raised or lowered by the O(D,D)

invariant constant metric,

JAB =

 0 1

1 0

 .
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.
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Geometric Constitution of Double Field Theory

Doubled-yet-gauged spacetime

The spacetime is formally doubled, being (D+D)-dimensional.

However, the doubled spacetime is gauged : the coordinate space is equipped with an

equivalence relation,

xA ∼ xA + φ∂Aϕ ,

which we call ‘coordinate gauge symmetry’.

Note that φ and ϕ are arbitrary functions in DFT.

Each equivalence class, or gauge orbit, represents a single physical point.

Diffeomorphism symmetry means an invariance under arbitrary reparametrizations of

the gauge orbits.
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Geometric Constitution of Double Field Theory

Realization of the coordinate gauge symmetry.

The equivalence relation is realized in DFT by enforcing that, arbitrary functions and

their arbitrary derivatives, denoted here collectively by Φ, are invariant under the

coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) , ∆A = φ∂Aϕ .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .
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Geometric Constitution of Double Field Theory

Section condition.

The invariance under the coordinate gauge symmetry can be shown to be equivalent to

the section condition ,

∂A∂
A ≡ 0 .

Explicitly, acting on arbitrary functions, Φ, Φ′, and their products, we have

∂A∂
AΦ=0 (weak constraint) ,

∂AΦ∂AΦ′=0 (strong constraint) .
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Geometric Constitution of Double Field Theory

Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.
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Geometric Constitution of Double Field Theory

Diffeomorphism.

Diffeomorphism symmetry in O(D,D) DFT is generated by a generalized Lie derivative

Siegel, Courant, Grana

L̂X TA1···An := X B∂BTA1···An + ωT ∂BX BTA1···An +
n∑

i=1

(∂Ai XB − ∂BXAi )TA1···Ai−1
B

Ai+1···An ,

where ωT denotes the weight.

In particular, the generalized Lie derivative of the O(D,D) invariant metric is trivial,

L̂XJAB = 0 .

The commutator is closed by C-bracket Hull-Zwiebach[
L̂X , L̂Y

]
= L̂[X ,Y ]C , [X ,Y ]AC = X B∂BY A − Y B∂BX A + 1

2 Y B∂AXB − 1
2 X B∂AYB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = P C
A , P̄A

BP̄B
C = P̄ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .
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Geometric Constitution of Double Field Theory

Dilaton and a pair of two-index projectors.

The geometric objects in DFT consist of a dilation, d , and a pair of symmetric

projection operators,

PAB = PBA , P̄AB = P̄BA , PA
BPB

C = P C
A , P̄A

BP̄B
C = P̄ C

A .

Further, the projectors are orthogonal and complementary,

PA
BP̄B

C = 0 , PAB + P̄AB = JAB .

Remark: The difference of the two projectors, PAB − P̄AB = HAB , corresponds to the

“generalized metric" which can be also independently defined as a symmetric O(D,D)

element, i.e. HAB = HBA, HA
BHB

C = δ C
A . However, in supersymmetric double field

theories it appears that the projectors are more fundamental than the “generalized metric".
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Geometric Constitution of Double Field Theory

Integral measure.

While the projectors are weightless, the dilation gives rise to the O(D,D) invariant

integral measure with weight one, after exponentiation,

e−2d .
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant Riemann curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .
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Geometric Constitution of Double Field Theory

Semi-covariant derivative and semi-covariant Riemann curvature.

We define a semi-covariant derivative,

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

and a semi-covariant “Riemann” curvature,

SABCD := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD

)
.

Here RABCD denotes the ordinary “field strength" of a connection,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
E ΓBED − ΓBC

E ΓAED .

As I will explain shortly, we may determine the (torsionelss) connection:

ΓCAB = 2
(
P∂CPP̄

)
[AB]

+ 2
(
P̄[A

DP̄B]
E − P[A

DPB]
E) ∂DPEC

− 4
D−1

(
P̄C[AP̄B]

D + PC[APB]
D)(∂Dd + (P∂E PP̄)[ED]

)
,

which is the DFT generalization of the Christoffel connection.
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .
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Geometric Constitution of Double Field Theory

The semi-covariant derivative then obeys the Leibniz rule and annihilates the O(D,D)

invariant constant metric,

∇AJBC = 0 .

A crucial defining property of the semi-covariant “Riemann” curvature is that, under

arbitrary transformation of the connection, it transforms as total derivative,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

Further, the semi-covariant “Riemann” curvature satisfies precisely the same symmetric

properties as the ordinary Riemann curvature,

SABCD = S[AB][CD] = SCDAB , S[ABC]D = 0 ,

as well as additional identities concerning the projectors,

PI
APJ

BP̄K
C P̄L

DSABCD=0 , PI
AP̄J

BPK
C P̄L

DSABCD = 0 .

It follows that

SAB
AB=0 .
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The first two relations are the compatibility conditions with all the geometric

objects , or NS-NS sector, in DFT.

The third constraint is the compatibility condition with the O(D,D) invariant

constant metric, i.e. ∇AJBC = 0.
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Geometric Constitution of Double Field Theory

The uniqueness of the torsionless connection.

The connection is the unique solution to the following five constraints:

∇APBC = 0 , ∇AP̄BC = 0 ,

∇Ad = − 1
2 e2d∇A(e−2d ) = ∂Ad + 1

2 ΓB
BA = 0 ,

ΓABC + ΓACB = 0 ,

ΓABC + ΓBCA + ΓCAB = 0 ,

PABC
DEF ΓDEF = 0 , P̄ABC

DEF ΓDEF = 0 .

The next cyclic property makes the semi-covariant derivative compatible with the

generalized Lie derivative as well as with the C-bracket,

L̂X (∂) = L̂X (∇) , [X ,Y ]C(∂) = [X ,Y ]C(∇) .

The last formulae are projection conditions which we impose intentionally in

order to ensure the uniqueness.
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order to ensure the uniqueness.
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Geometric Constitution of Double Field Theory

Six-index projection operators.

The six-index projection operators are explicitly,

PCAB
DEF := PC

DP[A
[E PB]

F ] + 2
D−1 PC[APB]

[E PF ]D ,

P̄CAB
DEF := P̄C

DP̄[A
[E P̄B]

F ] + 2
D−1 P̄C[AP̄B]

[E P̄F ]D ,

which satisfy the ‘projection’ properties,

PABC
DEFPDEF

GHI = PABC
GHI , P̄ABC

DEF P̄DEF
GHI = P̄ABC

GHI .

Further, they are symmetric and traceless,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF ] , PABPABCDEF = 0 ,

P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF ] , P̄ABP̄ABCDEF = 0 .
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Geometric Constitution of Double Field Theory

Crucially, the projection operator dictates the anomalous terms in the diffeomorphic

transformations of the semi-covariant derivative and the semi-covariant Riemann curvature,

(δX−L̂X )∇CTA1···An =
n∑

i=1

2(P+P̄)CAi
BDEF∂D∂E XF TA1···Ai−1BAi+1···An ,

(δX − L̂X )SABCD=2∇[A

(
(P+P̄)B][CD]

EFG∂E∂F XG

)
+ 2∇[C

(
(P+P̄)D][AB]

EFG∂E∂F XG

)
.
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and
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Geometric Constitution of Double Field Theory

Complete covariantizations.

Both the semi-covariant derivative and the semi-covariant Riemann curvature can be

fully covariantized, through appropriate contractions with the projectors:

PC
DP̄A1

B1 · · · P̄An
Bn∇DTB1···Bn , P̄C

DPA1
B1 · · ·PAn

Bn∇DTB1···Bn ,

PABP̄C1
D1 · · · P̄Cn

Dn∇ATBD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇ATBD1···Dn (divergences) ,

PABP̄C1
D1 · · · P̄Cn

Dn∇A∇BTD1···Dn , P̄ABPC1
D1 · · ·PCn

Dn∇A∇BTD1···Dn (Laplacians) ,

and

PA
C P̄B

DSCED
E (“Ricci” curvature) ,

(PACPBD − P̄AC P̄BD)SABCD (scalar curvature) .
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.
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Geometric Constitution of Double Field Theory

Action.

The action of O(D,D) DFT is given by the fully covariant scalar curvature,

∫
ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD ,

where the integral is taken over a section, ΣD .

The dilation and the projector equations of motion correspond to the vanishing of the

scalar curvature and the “Ricci” curvature respectively.

Note: It is precisely the above expression that allows the ‘1.5 formalism’ to work in the full

order supersymmetric extensions of N = 1, 2, D = 10 Jeon-Lee-JHP
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Geometric Constitution of Double Field Theory

Section.

Up to O(D,D) duality rotations, the solution to the section condition is unique. It is a

D-dimensional section, ΣD , characterized by the independence of the dual coordinates,

i.e.
∂

∂x̃µ
≡ 0 ,

while the whole doubled coordinates are given by

xA = (x̃µ, xν) ,

where µ, ν are now D-dimensional indices.
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Geometric Constitution of Double Field Theory

Riemannian reduction.

To perform the Riemannian reduction to the D-dimensional section, ΣD , we

parametrize the dilation and the projectors in terms of D-dimensional Riemannian

metric, gµν , ordinary dilaton, φ, and a Kalb-Ramond two-form potential, Bµν ,

PAB − P̄AB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ .
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∣∣∣
ΣD

= Rg + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].
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(PACPBD − P̄AC P̄BD)SABCD

∣∣∣
ΣD

= Rg + 4∆φ− 4∂µφ∂µφ− 1
12 HλµνHλµν ,

where as usual, Hλµν = 3∂[λBµν].

DFT-diffeomorphim ⇒ D-dimensional diffeomorphism plus B-field gauge symmetry.

Up to field redefinitions, the above is the most general parametrization of the

“generalized metric", HAB = PAB − P̄AB , when its upper left D × D block is

non-degenerate.
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Geometric Constitution of Double Field Theory

Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate – where g−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, DFT and a doubled sigma model –which I will discuss later– have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic DFT and the corresponding doubled sigma

model reduces to a certain ‘chiral’ sigma model.
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Non-Riemannian backgrounds.

When the upper left D × D block of HAB = (P−P̄)AB is degenerate – where g−1 might

be positioned – the Riemannian metric ceases to exist upon the section, ΣD .

Nevertheless, DFT and a doubled sigma model –which I will discuss later– have no

problem with describing such a non-Riemannian background.

An extreme example of such a non-Riemannian background is the flat background

where

HAB = (P−P̄)AB = JAB .

This is a vacuum solution to the bosonic DFT and the corresponding doubled sigma

model reduces to a certain ‘chiral’ sigma model.

Allowing non-Riemannian backgrounds, DFT is NOT a mere reformulation of

SUGRA. It describes a new class of string theory backgrounds. c.f. Gomis-Ooguri
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Supersymmetric Extension
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Based on the differential geometry I just described,

after incorporating fermions and R-R sector,

it is possible to construct, to the full order in fermions,

Type II, or N = 2, D = 10 Supersymmetric Double Field Theory

of which the Lagrangian reads

LType II = e−2d
[

1
8 (PABPCD − P̄ABP̄CD)SACBD + 1

2Tr(FF̄)− i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q

+i 1
2 ρ̄γ

pD?pρ− iψ̄p̄D?p̄ρ− i 1
2 ψ̄

p̄γqD?qψp̄ − i 1
2 ρ̄
′γ̄p̄D′?p̄ ρ

′ + iψ̄′pD′?p ρ′ + i 1
2 ψ̄
′p γ̄q̄D′?q̄ ψ

′
p

]
Jeon-Lee-Suh-JHP
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Symmetries of N = 2 D = 10 SDFT

O(D,D) T-duality

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

All the bosonic symmetries are realized manifestly and simultaneously.

For this, it is crucial to have the right field variables:

d , VAp , V̄Ap̄ , Cαᾱ , ρα , ρ′ᾱ , ψαp̄ , ψ′ᾱp

which are O(D,D) covariant genuine DFT-field-variables, and a priori they are NOT

Riemannian, such as metric, B-field, R-R p-forms.
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Unificaiton of IIA and IIB

O(D,D) T-duality

Gauge symmetries

1 DFT-diffeomorphism (generalized Lie derivative)

2 A pair of local Lorentz symmetries, Spin(1,D−1)L × Spin(D−1, 1)R

3 local N = 2 SUSY with 32 supercharges.

The theory is chiral with respect to both Local Lorentz groups.

Consequently, there is no distinction of IIA and IIB =⇒ Unificaiton of IIA and IIB

While the theory is unique, it contains type IIA and IIB SUGRA backgrounds as

different kind of solutions.
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For details of the supersymmetric construction,

I refer the audience to the talk by Dr. Imtak Jeon

on Friday, PA3-2 18:30-21:30

Stringy Unification of Type IIA and IIB Supergravities under

N = 2 D = 10 Supersymmetric Double Field Theory
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Worldsheet Perspective
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String propagates in doubled-yet-gauged spacetime

The section condition is equivalent to the ‘coordinate gauge symmetry’, 1304.5946

xM ∼ xM + ϕ∂Mϕ′ .

A ‘physical point’ is one-to-one identified with a ‘gauge orbit’ in coordinate space.

The coordinate gauge symmetry can be concretely realized on worldsheet, 1307.8377

S = 1
4πα′

∫
d2σ L , L = − 1

2

√
−hhij Di X M Dj X NHMN (X)− εij Di X MAjM ,

where

Di X M = ∂i X M −AM
i , AM

i ∂M ≡ 0 .

The Lagrangian is quite symmetric thanks to the auxiliary gauge field, AM
i :

String worldsheet diffeomorphisms plus Weyl symmetry (as usual)

O(D,D) T-duality

Target spacetime diffeomorphisms

The coordinate gauge symmetry

c.f. Hull; Tseytlin; Copland, Berman, Thompson; Nibbelink, Patalong; Blair, Malek, Routh
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String propagates in doubled-yet-gauged spacetime

For example, under target spacetime ‘finite’ diffeomorphism à la Zwiebach-Hohm

LM
N := ∂AX ′B , L̄ := J LtJ−1 ,

F := 1
2

(
LL̄−1 + L̄−1L

)
, F̄ := J F tJ−1 = 1

2

(
L−1L̄ + L̄L−1) = F−1 ,

each field transforms as

X M −→ X ′M (X) ,

HMN (X) −→ H′MN (X ′) = F̄M
K F̄N

LHKL(X) ,

AM −→ A′M = ANFN
M + dX N (L− F )N

M : A′M∂′M ≡ 0 ,

DX M −→ D′X ′M = DX NFN
M ,

such that the worldsheet action remains invariant, up to total derivatives.
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String propagates in doubled-yet-gauged spacetime

The Equation Of Motion for X L can be conveniently organized in terms of our

DFT-Christoffel connection:

1√
−h
∂i
(√
−hDi X MHML + εij∂iAjL

)
− 2ΓLMN (PDi X)M (P̄Di X)N = 0 ,

which is comparable to the geodesic motion of a point particle, Ÿλ + Γλµν ẎµẎν = 0.

The EOM of AM
i implies a priori,

δAiM

(
HM

NDi X N + 1√
−h
εij Dj X M

)
= 0 .

Especially, for the case of the ‘non-degenerate’ Riemannian background, a complete

self-duality follows

HM
NDi X N + 1√

−h
εij Dj X M = 0 .

Finally, the EOM of hij gives the Virasoro constraints,(
Di X M Dj X N − 1

2 hij Dk X M Dk X N
)
HMN = 0 .
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String propagates in doubled-yet-gauged spacetime

After parametrization, X M = (Ỹµ,Yν), HMN (G,B), and integrating out AM
i , it can

produce either the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′L ≡

1
2πα′

[
− 1

2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ε
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

with the bonus of the topological term introduced by Giveon-Rocek, Hull
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After parametrization, X M = (Ỹµ,Yν), HMN (G,B), and integrating out AM
i , it can

produce either the standard string action for the ‘non-degenerate’ Riemannian case,

1
4πα′L ≡

1
2πα′

[
− 1

2

√
−hhij∂i Yµ∂j YνGµν(Y ) + 1

2 ε
ij∂i Yµ∂j YνBµν(Y ) + 1

2 ε
ij∂i Ỹµ∂j Yµ

]
,

with the bonus of the topological term introduced by Giveon-Rocek, Hull

or chiral actions for ‘degenerate’ non-Riemannian cases, e.g. for HAB = JAB ,

1
4πα′L ≡

1
4πα′ ε

ij∂i Ỹµ∂j Yµ , ∂i Yµ + 1√
−h
εi

j∂j Yµ = 0 .

c.f. Gomis-Ooguri
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U-duality
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Parallel to the stringy differential geometry for O(D,D) T-duality,

it is possible to construct M-theoretic differential geometry for each U-duality group.

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



AN−1 ≡ sl(N)

DN−1 ≡ so(N−1,N−1)

EN−1

EN

Table: Dynkin diagrams for AN−1, DN−1, EN−1 and EN

E11 : conjectured to be the ultimate duality group. West

E10 : Damour, Nicolai, Henneaux and further En (n ≤ 8) “Exceptional Field Theory”

D10 : Double Field Theory

A10 : U-gravity
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U-gravity SL(N) 1402.5027 with Yoonji Suh

Precisely analogous formalism has been developed for SL(N) , N 6= 4.

Extended-yet-gauged spacetime (c.f. Berman-Perry for N = 5),

xab = −xba , ∂[ab∂cd ] ≡ 0 .

Diffeomorphism generated by a generalized Lie derivative

Semi-covariant derivative and semi-covariant curvature

Complete covariantizations of them dictated by a projection operator

The U-gravity action is given by the fully covariant scalar curvature,∫
Σ

M
1

4−N S ,

where M = det(Mab) and the integral is taken over a section, Σ.
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U-gravity: Unification of M-theory and IIB

Up to SL(N) duality rotations, the section condition admits two inequivalent solutions.

(N−1)-dimensional ΣN−1:

Three-dimensional Σ3:
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U-gravity: Unification of M-theory and IIB

Up to SL(N) duality rotations, the section condition admits two inequivalent solutions.

(N−1)-dimensional ΣN−1: Riemannian metric, gαβ , a vector, vα, and a scalar, φ,

Mab =

 gαβ√
|g|

vα

vβ
√
|g|
(
−eφ + v2

)
 .

The U-gravity scalar curvature reduces to a massive GR,

S|ΣN−1
= 2e−φ

[
Rg − (N−3)(3N−8)

4(N−4)2 ∂αφ∂αφ+ N−2
N−4 ∆φ+ 1

2 e−φ (5αvα)2
]
.

Three-dimensional Σ3:

Jeong-Hyuck Park Stringy Differential Geometry and Supersymmetric Double Field Theory



U-gravity: Unification of M-theory and IIB

Up to SL(N) duality rotations, the section condition admits two inequivalent solutions.

(N−1)-dimensional ΣN−1: Riemannian metric, gαβ , a vector, vα, and a scalar, φ,

Mab =

 gαβ√
|g|

vα

vβ
√
|g|
(
−eφ + v2

)
 .

The U-gravity scalar curvature reduces to a massive GR,

S|ΣN−1
= 2e−φ

[
Rg − (N−3)(3N−8)

4(N−4)2 ∂αφ∂αφ+ N−2
N−4 ∆φ+ 1

2 e−φ (5αvα)2
]
.

Three-dimensional Σ3: metric, g̃µν , vectors, ṽ jµ, and scalars, M̃ij ,

Mab =

 g̃µν
√
|g̃|

− ṽ jµ

−ṽ iν √
|g̃|(e−φ̃M̃ij + ṽ iλ ṽ j

λ)

 .

The U-gravity scalar curvature reduces to an SL(N−3) S-duality manifest GR,

S|Σ3
= −2Rg̃+ (N−3)(3N−8)

2(N−4)2 ∂̃µφ̃∂̃µφ̃− 4(N−3)
N−4 ∆̃φ̃− 1

2 ∂̃
µM̃ij ∂̃µM̃ij +eφ̃M̃ij5̃µṽ i

µ5̃ν ṽ j
ν .

For SL(5), the two inequivalent solutions correspond toM-theory and type IIB

(compactified on a compact seven manifold) Blair-Malek-JHP.
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Mab =

 gαβ√
|g|

vα

vβ
√
|g|
(
−eφ + v2

)
 .

The U-gravity scalar curvature reduces to a massive GR,

S|ΣN−1
= 2e−φ

[
Rg − (N−3)(3N−8)

4(N−4)2 ∂αφ∂αφ+ N−2
N−4 ∆φ+ 1

2 e−φ (5αvα)2
]
.

Three-dimensional Σ3: metric, g̃µν , vectors, ṽ jµ, and scalars, M̃ij ,

Mab =

 g̃µν
√
|g̃|

− ṽ jµ

−ṽ iν √
|g̃|(e−φ̃M̃ij + ṽ iλ ṽ j

λ)

 .

The U-gravity scalar curvature reduces to an SL(N−3) S-duality manifest GR,

S|Σ3
= −2Rg̃+ (N−3)(3N−8)

2(N−4)2 ∂̃µφ̃∂̃µφ̃− 4(N−3)
N−4 ∆̃φ̃− 1

2 ∂̃
µM̃ij ∂̃µM̃ij +eφ̃M̃ij5̃µṽ i

µ5̃ν ṽ j
ν .
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Conclusion

Summary

Riemannian geometry is for particle theory. String theory requires a novel differential

geometry which geometrizes the whole NS-NS sector and underlies DFT.

Novel differential geometic ingredients:

� Spacetime being extended-yet-gauged (section condition)

� Semi-covariant derivative and semi-covariant curvature

� Complete covariantizations of them through ‘projection’.

N = 2 D = 10 SDFT has been constructed to the full order in fermions. The theory

unifies IIA and IIB SUGRAs, and allows non-Riemannian ‘metric-less’ backgrounds.

Precisely parallel formulation for SL(N) U-duality under the name, U-gravity.
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Conclusion

Outlook

Further study and classification of the non-Riemannian, ‘metric-less’ backgrounds.

Quantization of the string action on doubled-yet-gauged spacetime.

O(10, 10) covariant Killing spinor equation → SUSY and T-duality are compatible.

Further generalization of ‘Generalized Complex structure’ or ‘G-structure’.

Hitchin, Gualtieri, Gauntlett, Tomasiello, Rosa

DFT cosmology? Cosmological constant reads Λe−2d = Λ
√
−ge−2φ.

The “relaxation” of the section condition: Geissbuhler; Graña, Marqués, Aldazabal;

Berman, Musaev, Blair, Malek, Perry; Berman, Kanghoon Lee for Scherk-Schwarz and

Blumenhagen, Fuchs, Lust, Sun for non-associativity.

Geometrization of ‘Exceptional Field Theory’ Cederwall, Samtleben-Hohm

α′-correction to DFT Siegel et al. Marques et al. Waldram et al.

c.f. Talk by Dr. Kanghoon Lee, Friday evening.

Quantization of Gravity in the new set up?
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Thank you.
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The End
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